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INTRODUCTION

personal rapid transit and dual-mode vehicles capable of both manual and auto-
matic operation, require automatic guidance systems. The guidance problem for such
a vehicle divides into two parts - longitudinal guidance and lateral guidance. The
longitudinal guidance system must keep the vehicle in its appropriate slot along
the guideway from the initial point to destination. Its functions include routine
speed control, inter-vehicle spacing, and collision avoidance schemes to cope safely
with system failures. On the other side of the total guidance problem is lateral
control which maintains the vehicle near the center of its guideway. Whereas the
longitudinal system must of necessity involve relationships among many vehicles,
the lateral control aspect involves each vehicle separately. The lateral guidance
problem itself separates into two distinct, but often interrelated parts - sensing
and the control action. Sensing involves the collection of information concerning
the state of the vehicle with respect to the guideway reference system. This in-
formation is then used to initiate a control action. For example, in a railroad
vehicle, deviations of a wheelset from the central position of the track (sensing)
cause the wheelset, by means of the forces acting between wheel and rail, to turn
in the proper sense to null the error (control action). Here, the sensing and
control action functions are intimately coupled. In the case of a person driving
an automobile, separation of the two functions is apparent. When the driver
perceives his automobile to have deviated from the center of his lane (sensing),

he steers the front wheels to return to a safe condition (control action).

To design and implement the automatic lateral guidance system for a rubber
tired, non-tracked vehicle (dual-mode or personal rapid transit, for example) one
need study both the sensing and control action sides of the problem. During the
past fifteen years, several concepts have been proposed and studied for automatic
highwaysl’2’3’4’5’6’7. Most of the emphasis has been placed upon the sensing
half of the lateral control problem. This emphasis is justified because of the
practical difficulties encountered. For example, reinforcing steel embedded in
concrete highways distorts the magnetic field of a buried cable used as a refer-
ence and introduces errors into the state measurements. Very little effort, on
the other hand, has been devoted to the control action part of the problem. About
all that has been done is the feeding back of one or two of the state variables,
varying the gains, and looking at the resulting root loci. It is true that these

classical servomechanism analyses result in stable controllers, and one might

accept the statement of Fenton4,




The design of a complete vehicular steering system consists of three
main parts:

1. the design of a suitable roadway reference for guidance,
2 the design of appropriate sensors so that the position of

the vehicle relative to the reference can be determined,
3. the design of the steering control.

Since the design of the third item is easily accomplished, only
the first two are discussed.

-, o~ A o~ s

Fenton notwithstanding, the control action aspect does deserve a more nearly com-
plete treatment from a modern control theory point of view. This treatment is not
of academic interest alone, for it will be shown that a great flexibility in the
system's dynamics can be achieved. In addition, optimal control techniques will
be explored to determine the feedback gains which minimize a passenger comfort
criterion, the square of the lateral acceleration. This is a first-cut analysis

in the sense that neither system non-linearities nor noise in the measurements

will be considered.




three

rly com-
nt is not
in the
es will
nfort
nalysis

nents

EQUATIONS OF MOTION

The linearized equations of motion for a rubber-tired vehicle will be derived
with the aid of Figure 1. The vehicle mass center is located a distance y from
the X-axis, and Yy is the angle between the longitudinal axis of the vehicle and
the X-axis. B is defined to be the angle between the longitudinal axis of the
vehicle and the velocity vector of the center of mass. This velocity is assumed
to have a constant magnitude V. The steering angle of the front wheels (the con-
trol input) is &, and a is the distance from the center of mass to the front and

rear axles. All of the angles are assumed to remain small throughout the motion.

Y4

y SENSING ARM

=
Figure 1. Vehicle Geometry

Pneumatic tires produce a side force on a vehicle which is a function of the
tire slip angle, the driving or braking torque, properties of the guideway surface,
etc. The slip angle is defined as the angle between the velocity of the wheel and
the wheels's diametral plane. For small slip angles, the side force on the ith
wheel fyi may be represented as being linearly related to the slip angle, a,.
That is,

£,i="CPi%




where cp; is the constant of proportionality and is known as the "cornering power"

of the tire. It will be assumed that the cornering power is the same for all four
tires. The slip angles for the front and rear tires are, respectively,
a s In ma
= = -6
g B+ gV
— _a g
a =8 gV
The total force in the lateral direction is
fy =—2cp(af+ar) = = 2cp(2B-8) = - 4cp B + 2cp 8
and therefore,
MV (B+)) = = 4c + 2cp 6
(B+y) p B P e
since Mv(é+¢) is the acceleration of the mass center in the y-direction for small
angles. The moment of the tires along the Z - axis (out of the plane of Figure 1)
about the vehicle's center of mass is whed
the
2cpa (ar—af) sinc
and thus dymg
2cpa (-2%¢+6) =17
proe
where I is the vehicle's yaw moment of inertia (the Z - axis is assumed to be a mati
vehicle principal axis of inertia direction). Rearranging, the relevant equations
become
N 4cEa2 M
Iy + v Y = 2cpa §
The:
sma

MV) + MVE + 4cpB = 2cp ©

In addition the lateral velocity is
y = V(p+g)

It is convenient to put these equations into state variable form, i.e., a set of

first order differential equations. To facilitate this, let
xl=wIX2=IPIX3=BIX4_Y
In terms of these new variables x, the equations of motion become

X = X

1 2
4cEa2 2cpa
*y=- g%t T8



g power"

all four

r small
igure 1)

be a

juations

et of

= - APy -y 4+ 2CR g

X3 = T MV
% = +
x4 Vxl Vx3

In matrix notation (x is the state vector),

3

3 0 1 0 0 Xy 0
iz 0 _QCHaz 0 0 " 2cpa
Iv 2 I
- + §
. _ _4cp 2¢cp
X5 0 1 v 0 x3 T
_"x4__ L_V 0 v q“ _f44 B 0 |

The system is thus in the standard form
x = Fx + Gu

where u = 8§ (the control variable) in the case at hand. It is here assumed that
the steering angle § may be set instantaneously. This assumption is justified
since the steering dynamics can be made sufficiently faster then the vehicle

dynamics with a simple servomechanism.

It is interesting to note at this point that if the cornering power ap-
proaches infinity while allowing M and I to approach zero one obtains the kine-

matic relationships

5 S
y = V(w+§)
-_V .
V=578

These simplified equations are useful at low speeds when the inertial effects are

small.




CONTROLLABILITY AND OBSERVABILITY

The desired motion of the rubber tired vehicle is along the X - axis (the
reference axis of the guideway), i.e.,

Pny deviations from this nominal condition must be nulled. 1Indeed, this is one
purpose of the automatic lateral guidance system.* The steering angle 6 (t) must,
therefore, be chosen tc bring the system to the null state from arbitrary initial

conditions. This is, then, the classic regulator problem.

Clearly, in order to null initial conditions, there must be some knowledge of
the state of the system and hence a measurement or measurements must be made.
There are numerous measurements which can be made, e.g., location of the mass
center (y), angle between the longitudinal axis of the vehicle and the X - axis
(), or even a linear combination of the state variables. A particularly conven-
ient measurement is y + cy. This combination results when, for example, a magne-
tic field sensing coil, mounted a distance C ahead of the mass center, is used in
conjunction with a buried cable to provide state information. It also arises when
a sensing "feeler" tracks a curb on the side of the guideway as shown in Figure 1.

For the remainder of this report it will be assumed that the combination y + cy

is available in real time. In terms of the state vector x, this measurement
becomes
)
X3
z = Hx = [¢ 0 0 1]
X
3
*4

With this measurement z, can one locate the roots of the system characteristic
equation arbitrarily? This question can be answered only after two others are
answered. First, if all the states are measured and available can the eigenvalues
of the system be located arbitrarily? And if this is so, can all the states be
inferred from the available measurement? The first question concerns controcll-

ability and the second, observability.

Formally, a system is said to be controllable if all initial states can be
driven to the null state in a finite time. For constant, finite, dimensional,
linear systems (as is the system under consideration), controllability is
tantamount to the capability of locating the system roots arbitrarily with state

variable feedbacke. Let

*Agother function is forcing the vehicle to follow a curving guideway. This aspect
will not be treated here.
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§ = - Cx
where C = [¢1C2C3C4]
Then %X = (F-GC)x

and 1f the system is controllable, the eigenvalues of F-GC can be placed in
arbitrary locations. So the system being considered must be investigated to deter-
mine whether or not it is completely controllable. There are several ways of

determining system controllability. One way is to look at the rank of the so-

called controllability matrix,
[G FG -+ Fn_lG]

where n is the dimension of F. If this matrix has rank n, then the system is
controllable. Another way, one which sheds more light on the nature of the
dynamical system, consists of finding a new coordinate system in which the equa-
tions adopt a simpler form. If a basis could be found in which the system matrix
F were diagonal, then the equations in terms of the new state variables would be
uncoupled and whether or not the system is controllable becomes transparent. In
this case, the system is completely controllable if and only if the control enters
each equation. Not all matrices can be diagonalized by means of a similarity
transformation; however, all matrices can be put into the more general Jordan

normal form. In the case at hand, the eigenvalues of F are

4 2
-4cpa -4cp
e Op v ' MV

When s = 0 (s is the Laplace complex variable), the rank of sI - F is 3, so the
system does not have full degeneracy, i.e., F cannot be diagonalized. The Jordan

form for F must be

P~ -
0 1 0
0 0 0
J =
-4c2a2 0
0 O TV
-4cp
LO 0 0 MV

for I # Ma2. Notice that the eigenvalues of F are along the main diagonal and

that there is a one above the main diagonal. If

then the Jordan matrix will have two ones above the main diagonal. One must now
find the non-singular, constant matrix R which transforms F to the Jordan form.

That is, define a new state vector Y to be a linear combination of the state

variables x.




RFR 1Y+ RGu (1)

e
I

So,

or
RF = JR (2)

Since F is 4 x 4, Equation 2 represents 16 equations in the 16 unknown elements

of R. Solving these equations, one obtains

A, \ 0 MV 17
4cpa2 4cp 4cp \Y
1 L - 0 0
R = 4cpa
0 1 0 0
4cp 4cpa2
s B 1 MV~ IV 0
In terms of the new variables Y, the equations become
- M - - ey =t 1 =
Yl 0 1 0 0 Yl 5
\'
Y2 0 0 0 0 Y2 prs
= + $
. ~4dcpa 2cpa
Y3 0 0 —TVE~ 0 Y3 T
2.2 2 2.0 2
v 0 0 0 —4cp v 2cpaM”vV” + 8(cp) I - 8(cp) Ma
4 MV 4 IM2V2

In general, a system is controllable if and only if (1) no eigenvalue appears in
more than one Jordan block, and (2) no zero row of RG is the last row of a Jordan
block. Notice in our system that for V # 0*, all the rows of RG are non-zero

unless

ve = 39% [#a2—I] EMa2¢1] (3)

*When V = 0, the system is clearly uncontrollable.
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(2)

ements

cars in
a Jordan

Zero

(3)

1f this is the case, then the equation for Y4 is

v = _2CP
Yy W Y4

and hence the control § can have no influence over the Y, mode. In this case, the

system 1is not completely controllable. This fact does not, however, mean the

system is unstable. It merely means that an eigenvalue of F (specifically, :%52)

will also be an eigenvalue of F-GC for arbitrary C. This can be easily demon-

strated. In terms of Y, we have

Y = JY + RGu
and

u=-cCx=-CR Yy
So

. -1

Y = (J-RGCR )Y

If the ith row of RG is zero, then the ith row of RGCR_l is also zero. Hence, the
ith row of J — RGCR—l will be the same as the ith row of J. Only if the ith row
is the last row of a Jordan block are we interested. If this is the case, then
there is at most one non-zero element of the ith row of J (the i,i element)and
J—RGCR™ L. 1 Thus, J and

J—RGCR_l have an eigenvalue in common. One property of similarity transformations

Clearly, this term will be an eigenvalue of J—RGCR~

is that eigenvalues are left unchanged. Therefore, F and F-GC have an eigenvalue

in common when the system is not completely controllable.

Fortunately, the eigenvalue which cannot be moved in this case has a negative
real part; it is for this reason that the system can be stable at a velocity for
which it is uncontrollable. Notice in Equation 3 that if I>Ma2, then there is no
real V for which the system is uncontrollable. In most rubber-tired vehicles,
however, the wheels are near the ends of the vehicle and the radius of gyration
is likely to be less than a, that is, I is likely to be less than Maz. Then there
will be one positive real velocity for which the system is uncontrollable. If
this velocity is not the desired operating velocity, then the lack of complete

controllability is of little import.

In order to determine the row matrix C to produce the desired eigenvalues,

the characteristic equation is

[ 2
4 dcpa 4cp 2cpa 2cp 3
s * ( v T v ) *ET Gt W G|

~

i ls(cp}2a2 + 2cpa c. o+ 8(cp)2a c o+ (8(cp)2a2 _ 2cpa)c
2 I 1 IiMv 2 2 I
L IMV MV

2 2 2
+ | 8lep) "a c. + 8(cp) "a e

IMv 1 IMv 4 4

] s + §ASELEE c, =20
IM




If the roots of this equation can be located arbitrarily, then each of the
coefficients must be able to set arbitrarily. Fixing the constant term fixes C4.

With C4 fixed, Cl

C3 free to adjust the coefficients of s3 and s

adjusted independently only if

is determined by the coefficient of s. This then leaves C2 and
2. These coefficients can be

i

2cpa
I

=

\Y

2
8(cp)2a 8(cp}2a“ _ 2cpa
1M IMV I

(3%

Expanding this determinant, one obtains

v z 4P (Maz—l)
2
aM
which is the same condition for controllability as was found before from the Jordan

form.

We have thus shown that except for possibly one velocity, the system is com-
pletely controllable, i.e., the roots of the characteristic equation may be
located arbitrarily with state variable feedback. However, all the states are not
directly available; indeed, there is but one measurement, z =y + cy. One must,
therefore, investigate the possibility of estimating the state vector of the
system. An asymptotic state estimator is a model of the system to be observed,
the inpqt to which is the measurement z and the control u, and the output of which

is an estimate of the state. If the dynamical system is described by

x = Fx + Gu
z = Hx

then a state estimator for the system is

S

§ = Fx + Gu + L(z-HRXR)

where % is the estimate of x and L is an arbitrary gain matrix. This presumes that
the F, G, and H matrices are known exactly. In reality, they won't be known pre-
cisely and an error analysis must be performed. Such an error analysis will not

be considered here. Now look at the error in the estimate X - § & i = (F-LH)X.
That is, the error dynamics of the estimator is determined by the eigenvalues of
F—LH. In analogy to the controllability problem, the eigenvalues of F-LH can be
located arbitrarily if the system is observable., If a finite dimentional, linear
system is not completely observable, then one or more eigenvalues of F will be
eigenvalues of F—LH for arbitrary L. If the eigenvalue or eigenvalues which can-
not be moved have negative real parts, then a stable state estimator can still be
constructed, contrary to a statement by Kalman9 Tests for observability are
analogous to those for controllability, and the system at hand is observable

except when
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Notice that the system is always observable for Ma2 > I (assuming ¢ > 0). Remember
that the condition for complete controllability involved the factor Maz—I. There-
fore the system cannot be completely observable and controllable for all velocities
greater than zero (I # Ma2, c > 0). It can be shown that the system is completely
observable and controllable for all V > 0 when I = Maz. In addition, if I > Ma2
and ¢ is made negative, then the system again is completely observable/controlla-
ble. However, placing the sensor behind the mass center (c<o) is not desirable

from the standpoint of tracking a curving guideway. When

2
. ‘/4_09% (I_Ma2>
T

the eigenvalue common to F and F - LH is

5

g = - i£§§,

and since it is negative, a stable observer can be constructed.

The total control system is x = Fx - GCZ
% = FX - GCX + L(z-HX)
where % (the estimate of x) is fed back since x itself is unavailable. In terms

of x and X, the equations are

x = (F-GC)x + GCX
% = (F-LH)X
or
b4 F-GC GC b4
X 0 F-LH X

Because of the triangular nature of this system matrix, the characteristic equa-

I[SI— (F-GC)] | | [sI— (F-LH]I

So the 2n eigenvalues of the controlled system are the n eigenvalues of F—GC and

tion of the whole system is

the n eigenvalues of F-LH. When the system is both observable and controllable,
these 2n eigenvalues can be chosen arbitrarily. The observer gain matrix L is
likely to be chosen so that the observer roots are "faster" than the controller
roots, i.e., so that the observer errors die out rapidly compared with the

dynamics of the vehicle. Except for possibly the one velocity when the system is

11




not completely controllable/observable, the roots of the system characteristic

equation can be kept stationary as the vehicle proceeds from rest to its desired

operating velocity. Although the system poles are stationary, the system is still 1
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ROOT LOCATION SELECTION

The analysis in the previous section has shown that there is great freedom
in locating the system poles. 1In order to synthesize a control strategy, the de-
signer must have criteria for deciding where the poles should be. He might specify
simply that the system be stable and well damped or that errors resulting from non-
zero initial conditions die out sufficiently within a specified time. One of the
gains might be specified, for example, by selecting the maximum steady state value
that a state variable may take in response to a steady cross wind. Alternatively,
one might use the calculus of variations to select gains which minimize a cost
function selected by the designer. An important quantity from the standpoint of
passenger comfort is the lateral acceleration of the vehicle. For mathematical
convenience, a cost function will be selected which is the sum of the squares of
the lateral acceleration and some of the state variables. State variables are in-
cluded in the cost function to insure small deviations from the null condition.

From the equations of motion, the lateral acceleration y is

1 3
and since X1 = X
By = =P - 2cp
x3 M7 x3 x2 + T Sy
5 = 2CP (5=
¥ v (6 2x3)
Let the cost function K be
te
2 2¢ &
1 x12 x4 —HE(G—2x3
K = lim = + + at
N e e 2 = 2 % 2 2
f "o 10 40 [e}
to

where X107 F407 and a, are the maximum desirable values of X1r X4 and the lateral
acceleration. Penalties could also be placed on X, and X3 () and B). Expanding

the square of the lateral acceleration, one obtains

%3 s 3
2

(a M a M (a M)
o o _°
40p) (2cp) dcp

The cost function may be rewritten as

5
K = 1lim %/ [XTGT] A N X
t -t dt
£f o to NT 8 s

13




where
L = =5
0 0 0 0
x102
0 0 0 0 0 avai
A = : N = call
0 0 - S 0 - 1 is ¢
M 2 M 2
(ao ) 2(30 ) equa
4cp dcp -
h
0 0 0 1 . 5 the
X
L 40 | L ]
1
i 2

(25)
2cp
In terms of A, B, and N, it can be shownlO that the control which minimizes

X is

5= B1 (NT+GTs)x, (4)

i.e., a linear feedback relationship. The symmetric matrix S is the steady state

solution (if it exists) of a Ricatti Equation

§=0=-5F-TFs+ (SG+N)B_1(NT+GTS) - A (5)

The system at hand is fourth order, and because S is symmetric, Equation 5 repre-
sents ten simultaneous non-linear algebraic eguations in the elements of S.
Because the equations are quadratic, there may be extraneous roots which usually
can be eliminated by the requirement that S be positive definite. Another tech-
nique for finding the steady state S is to numerically integrate Equation 5

backwards until § ¥ 0. Once § is known, Equation 4 gives the optimal gains.

Choosing the constants X107 X407 and a0 does not guarantee that the state
variables and lateral acceleration will be below these values. Simulations with
typical initial conditions and/or disturbances must be run to determine whether
or not the levels are acceptable. If the lateral acceleration obtained from a
simulation is too high, for example, a, can be adjusted downward and a new set
of gains computed. This rational approach guarantees that the lateral accelera-
tion for the same initial conditions will decrease in the next simulation run.
Without this technique, one is not likely to know which gains must be changed
to alter the response in the desired way. The cost function selected is essen-
tially a trade-off between quickness of response and lateral acceleration. If
the penalty on lateral acceleration is larger than on the state variables, then
the response will be more leisurely. The designer must thus compromise between
response time and acceleration level. Once the suitable controller gains are
selected by this quadratic synthesis approach, observer gains are chosen to

provide quicker observer response.

14
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CONCLUS ION

The preceeding analysis has shown that there is a great amount of freedom
available to the designer in selecting the closed loop dynamics of an automati-
cally steered vehicle. Specifically, except for possibly one velocity, the system
is completely controllable and observable allowing arbitrary characteristic
equation design. A passenger comfort criterion such as the lateral acceleration
can be implemented into a cost function. Optimal control theory then produces

the optimal gains.
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